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Abstract
We consider the stabilization of a class of linear evolution systems z′ = Az+Bv under
the observation y = Cz bymeans of a finite dimensional control v. The control is based
on the design of a Luenberger observer which can be infinite or finite dimensional (of
dimension large enough). In the infinite dimensional case, the operator A is supposed
to generate an analytical semigroup with compact resolvent and the operators B and
C are unbounded operators whereas in the finite dimensional case, A is assumed to be
a self-adjoint operator with compact resolvent, B and C are supposed to be bounded
operators. In both cases, we show that if (A, B) and (A,C) verify the Fattorini-
HautusCriterion, thenwe can construct an observer-based control v of finite dimension
(greater or equal than largest geometric multiplicity of the unstable eigenvalues of A)
such that the evolution problem is exponentially stable. As an application, we study
the stabilization of the diffusion system.
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1 Introduction andMain Results

Given b ∈ L2(0, 1), consider the one-dimensional controlled heat equation

∂t z(t, x) = ∂xx z(t, x) + b(x)v(t), t > 0, x ∈ (0, 1),
∂x z(t, 0) = 0, z(t, 1) = 0,
z(0) = z0.

(1.1)

Obviously, the open-loop system (i.e. for v = 0) is exponentially stable, with a decay
rate defined by the smallest eigenvalue of the underlying operator describing the free
dynamics (namely the positive definite self-adjoint operator −∂xx with Neumann
boundary condition at x = 0 and Dirichlet boundary condition at x = 1). Based
on the observation

y(t) =
∫ 1

0
c(x)z(t, x) dx, (1.2)

where c ∈ L2(0, 1), a natural question that arises is to know whether it is possible
to design a finite dimensional feedback control v, such that the closed-loop system
(1.1) is exponentially stable with an arbitrary prescribed decay rate σ > 0. In a
recent work, a positive and constructive answer to this question has been proposed by
Katz and Fridman [13], using an observer-based feedback control. More precisely, the
authors proposed feasible design conditions for the construction of such controls for a
more general 1D reaction-diffusion equation with variable coefficients (i.e. for a free
dynamics described by an operator of the form ∂x (p(x)∂x ·) − q(x)·).

In this paper, our objective is to generalize this result to a large class of parabolic
systems, possibly multi-dimensional and involving unbounded control and/or obser-
vation operators. More precisely, given three complex Hilbert spaces H (the state
space),U (the control space) andY (the observation space), consider the linear infinite
dimensional system

z′(t) = Az(t) + Bv(t),
z(0) = z0,
y(t) = Cz(t),

(1.3)

where A : D(A) −→ H is an unbounded operator, B ∈ L (
U, (D(A∗))′

)
and C ∈

L (D(A),Y). Given σ > 0, the goal of this paper is to prove the existence of an
observer-based control v such that the solution of (1.3) is exponentially stable, with a
decay rate −σ :

‖z(t)‖H � Me−σ t‖z0‖H.

We will investigate two classes of infinite dimensional systems of the form (1.3). For
the first one, the observer-based feedback is constructed using an infinite-dimensional
observer (IDO). For the second one, under strongest assumptions on A, B and C ,
we design a finite dimensional observer (FDO) to construct the feedback control.
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Of course, a finite dimensional observer can be considered as a particular case of
infinite dimensional observer, but the former is much more interesting for computa-
tional purposes (and, clearly, more challenging to design). For instance, if the system
(1.3) describes an evolution PDE (like the Reaction–Diffusion equation of Sect. 4),
constructing an infinite dimensional observer requires to solve an evolution PDE,
corresponding to the observer (1.7). On the contrary, the finite dimensional observer
described by (1.10) is simply a set of evolution ODE. As one might expect, the proofs
to get these two results use different techniques.

We will consider the two following sets of assumptions on A, B and C (below,
ρ(A) denotes the resolvent set of A):

• Infinite-Dimensional Observer (IDO)

A is an operator with compact resolvent generating an analytic semigroup on H,

(H1.A)

(μ0 Id−A)−γ B ∈ L(U,H) is a linear bounded operator for some γ ∈ [0, 1)
(H1.B)

and μ0 ∈ ρ(A),

C(μ0 Id−A)−γ̂ ∈ L(H,Y) is a linear bounded operator for some γ̂ ∈ [0, 1)
(H1.C)

and μ0 ∈ ρ(A),

∀ε ∈ D(A∗), ∀λ ∈ C, Re λ � −σ, A∗ε = λε and B∗ε = 0 �⇒ ε = 0,
∀ε ∈ D(A), ∀λ ∈ C, Re λ � −σ, Aε = λε and Cε = 0 �⇒ ε = 0.

(H1.D)

• Finite-Dimensional Observer (FDO)

A is a self-adjoint operator with compact resolvent, (H2.A)

B ∈ L(U,H), (H2.B)

C ∈ L(H,Y), (H2.C)

∀ε ∈ D(A), ∀λ ∈ R, λ � −σ, Aε = λε and B∗ε = 0 �⇒ ε = 0,
∀ε ∈ D(A), ∀λ ∈ R, λ � −σ, Aε = λε and Cε = 0 �⇒ ε = 0.

(H2.D)
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In this work, we provide a generalization of the result obtained in [13] for a class of
parabolic systems. First, in Sect. 2, we consider the case of an infinite dimensional
observer (IDO). More precisely, we prove Theorem 1.1: we split the system (1.3) into
two parts in the same spirit as [2, 3], one part corresponds to the unstable modes of A
that defines a finite dimensional system and the other part is the infinite dimensional
system corresponding to the stable modes of A. Using (H1.D), we construct a Luen-
berger observer in the spirit of [16]. We prove the stability of the closed loop system
since the state, the observer and the error define all together a triangular system. In
Sect. 3, we deal with the case of the finite dimensional observer (FDO) and we prove
Theorem 1.2: here, A is supposed to be a selfadjoint operator with compact resolvent.
Hence, the projection operator defined in (1.5) becomes orthogonal. The first step will
be also to split the system and to construct a finite dimensional observer using (H2.D)
in the spirit of [13]. The challenge here consists to prove the stability of the observer,
the error and the state that define a strongly coupled system this time. To deal with this
issue, we show that it involves a Volterra type equation that can be solved by using a
fixed point argument, the mapping defines a contraction if the observer dimension is
large enough.

It is worth mentioning that assumption (H1.D) (and its counterpart (H2.D) in
the self-adjoint case) is the well-known Fattorini-Hautus criterion for exponential
stabilization (see [3, 8, 10]).

For every ν > 0, we set

	+
ν := {λ j ∈ σ(A) | Re λ j � −ν}, 	−

ν := {λ j ∈ σ(A) | Re λ j < −ν}, (1.4)

where σ(A) is the spectrum of A. Condition (H1.A) in the IDO case and (H2.A) in
the FDO case imply that 	+

ν describes a finite set. We define the projection

P+
ν = − 1

2ıπ

∫
�+

ν

(ζ Id−A)−1 dζ, P−
ν = Id−P+

ν , (1.5)

where�+
ν is a curve enclosing	+

ν but no other point of the spectrum of A and oriented
counterclockwise (see [12, V.5, p.272] ). We set

z±ν := P±
ν z, ∀z ∈ H.

We also introduce the finite dimensional operators

A±
ν := AP±

ν , B±
ν := P±

ν B, C±
ν := Cι±ν ,

where ι±ν is the embedding operator from H
±
ν := P±

ν H to H. Finally, we denote by
Q+

ν the orthogonal projection from Y onto Y
+
ν := CP+

ν H.
We are now in position to state our main results in the (IDO) and (FDO) cases.
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1.1 Infinite-Dimensional Observer (IDO)

Theorem 1.1 Let σ > 0 be given and assume that assumptions (H1.A), (H1.B), (H1.C)
and (H1.D) hold true. Then, there exist two operators K+

σ ∈ L(H, B∗(P+
σ )∗H) and

L+
σ ∈ L(CP+

σ H, P+
σ H) such that the observer-based feedback control defined by

v(t) = K+
σ ẑ(t), (1.6)

where the infinite dimensional observer ẑ solves

ẑ′(t) = Âz(t) + Bv(t) + L+
σ Q+

σ (Cẑ(t) − y(t)),
ẑ(0) = 0,

(1.7)

ensures that for any z0 ∈ H, the solution z of the closed loop (1.3–1.6–1.7), that is

z′(t) = Az(t) + BK+
σ ẑ(t),

z(0) = z0,

satisfies

‖z(t)‖H � Me−σ t‖z0‖H, ∀t > 0. (1.8)

To prove this result, we introduce the error e := z− ẑ and we check that systems (1.3)
and (1.7) yield

(
z
e

)′
=

(
A + BK+

σ −BK+
σ

0 A + L+
σ Q+

σ C

)(
z
e

)
.

The result follows then by choosing the operators K+
σ and L+

σ in such a way that both
A + BK+

σ and A + L+
σ Q+

σ C generate analytic semigroups with decay rate less than
−σ . This is achieved by solving two Riccati equations, using the method proposed by
Badra-Takahashi [2] (for K+

σ ) combined to a duality argument (for L+
σ ).

1.2 Finite-Dimensional Observer (FDO)

In this case, the stabilizing control is based on a finite dimensional observer of size
σ� > 0, where σ� > σ and need to be chosen large enough (see 3.19).

Theorem 1.2 Let σ > 0 be given and assume that assumptions (H2.A), (H2.B), (H2.C)
and (H2.D) hold true. Let K+

σ ∈ L(H, B∗P+
σ H) and L+

σ ∈ L(CP+
σ H, P+

σ H) be the
operators defined in Theorem 1.1. Then, there exists σ� > σ such that the observer-
based feedback control defined by

v(t) = K+
σ ẑ�(t) ∈ B∗P+

σ H ⊂ B∗P+
σ�H, (1.9)
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where the finite dimensional observer ẑ� ∈ P+
σ�H solves

ẑ′�(t) = A+
σ� ẑ�(t) + B+

σ�v(t) + L+
σ Q+

σ (C+
σ� ẑ�(t) − y(t)),

ẑ�(0) = 0,
(1.10)

ensures that for any z0 ∈ H, the solution z of the closed loop (1.3–1.9–1.10), that is

z′(t) = Az(t) + BK+
σ ẑ�(t),

z(0) = z0,

satisfies

‖z(t)‖H � Me−σ t‖z0‖H, ∀t > 0. (1.11)

To prove this result, we proceed as follows. Introducing the auxiliary variables

e := z+σ� − ẑ�, X =
(̂
z�
e

)
,

we show that the equations satisfied by the state z and the observer ẑ� yield

X
′(t) = AX(t) + L(z−σ�(t)),

(z−σ�)
′(t) = A−

σ� z−σ�(t) + B−
σ�K

+
σ X(t),

(1.12)

where

A =
(
A+

σ� + B+
σ�K+

σ −L+
σ Q+

σ C+
σ�

0 A+
σ� + L+

σ Q+
σ C+

σ�

)
, L(z−σ�) =

(−L+
σ Q+

σ Cz−σ�

L+
σ Q+

σ Cz−σ�

)
, K

+
σ = (K+

σ , 0).

We prove then that the matrix exp(tA) is exponentially stable with a decay rate less
than −σ . Next, thanks to the first equation in (1.12), we use Duhamel’s formula to
express X in terms of z−σ� . Plugging the obtained relation in the second equation of
(1.12), we obtain an integral equation for z−σ� . We use a fixed point argument to prove
the well-posedness of this integral equation in the weighted space

L∞
σ (0,∞;H−

σ�) := { f ∈ L∞(0,∞;H−
σ�) such that eσ(·) f (·) ∈ L∞(0,∞;H−

σ�)}.

This provides the expected result, that is the exponential decay of the controlled system
with a decay rate less than −σ .

1.3 RelatedWorks

The output feedback stabilization of linear and non linear time-invariant systems has
been extensively studied in the last decades. For finite dimensional systems, we refer
the interested reader to the survey [21] where necessary and sufficient conditions are
given. In the infinite dimensional case, sufficient conditions can be found for instance
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[7, Chapter 5] using Luenberger observers for the design of compensators. In particu-
lar, for bounded observation and control operators, such sufficient conditions are the
exponential stabilizability and exponential detectability of the system (A, B,C). A
complete list of references and new necessary and sufficient conditions can be found in
the recent work [25]. As already mentioned, the closest reference to our work is [13],
in which the authors considered the case of a one dimensional heat equation. Their
strategy is based on a (modal) splitting of the system into two parts: a finite dimen-
sional unstable one and a stable infinite dimensional one. A Luenberger observer of
large enough dimension is then constructed and the stability of the closed loop sys-
tem is proved using a Lyapunov function. Contrarily to the proof proposed here, the
arguments used in [13] are valid only in dimension one and heavily rely on the type
of the considered equation. Let us also mention that in [14], the authors used a similar
approach to prove the stabilization of a one dimension convection diffusion equation
in the case of a boundary control. The use of modal splitting for the stabilization of
infinite dimensional systems has also been achieved in some specific settings, like
Burgers equations [5, 22, 23], Navier–Stokes system [2, 3, 9, 18, 20], semi-linear
wave equation [6] and population dynamics [16, 17].

1.4 Outline

In Sect. 2, we prove Theorem 1.1, which provides the stabilizing observer-based
feedback-control through an infinite dimensional observer. In Sect. 3, we construct a
finite dimensional observer to design a similar feedback-control. For this case, we need
to assume that the operator A is self-adjoint and the control and observation operators
are bounded. Finally, in Sect. 4 and in Sect. 5, these abstract results are applied to
obtain a stabilizing control for Reaction–Diffusion systems. The paper ends with a
brief concluding section.

2 Infinite Dimensional Observer

2.1 Spectral Decomposition of the System

In this section, we suppose that assumptions (H1.A), (H1.B), (H1.C) and (H1.D)
hold true. We consider below a classical modal decomposition (it has been used, for
instance, in [2, 3, 9, 20]) that we recall it for the sake of completeness. Let σ > 0.
We first separate the spectrum of A into “unstable” and “stable” modes using the
projection P+

σ defined in (1.5). We set

H
+
σ = P+

σ H, H
−
σ = (Id−P+

σ )H, H = H
+
σ ⊕ H

−
σ .

According to this projection, we set

A+
σ := A|H+

σ
: H+

σ → H
+
σ , A−

σ := A|H−
σ

: D(A) ∩ H
−
σ → H

−
σ .
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Then the spectrum of A+
σ is exactly 	+

σ and the spectrum of A−
σ is exactly 	−

σ where
	+

σ and 	−
σ are defined in (1.4). We denote by A∗ the adjoint operator of A and we

define similarly the projection (P+
σ )∗ such that

(P+
σ )∗ = − 1

2ıπ

∫
�+

σ

(ζ Id−A∗)−1 dζ. (2.1)

The projection (2.1) provides also the following spaces

(H+
σ )∗ = (P+

σ )∗H, (H−
σ )∗ = (Id−(P+

σ )∗)H, H = (H+
σ )∗ ⊕ (H−

σ )∗, (2.2)

with

(A+
σ )∗ := A∗

|(H+
σ )∗ : (H+

σ )∗ →(H+
σ )∗, (A−

σ )∗ := A|(H−
σ )∗ : D(A∗) ∩ (H−

σ )∗ →(H−
σ )∗.

Lemma 2.1 There exist ε > 0 and M > 0 such that for any δ � 0, t > 0

∥∥∥eA−
σ t

∥∥∥L(H−
σ )

� Me−(σ+ε)t ,

∥∥∥(μ0 Id−A−
σ )δeA

−
σ t

∥∥∥L(H−
σ )

� M
tδ
e−(σ+ε)t ,∥∥∥e(A−

σ )∗t
∥∥∥L(H−

σ )
� Me−(σ+ε)t ,

∥∥∥(μ0 Id−(A−
σ )∗)δe(A−

σ )∗t
∥∥∥L(H−

σ )
� M

tδ
e−(σ+ε)t .

(2.3)

Proof We detail the proof only for the operator A−
σ , as the arguments for its adjoint

are similar. The first inequality is obvious. Concerning the second one, we first note
that

(μ0 Id−A−
σ )δeA

−
σ t = (μ0 Id−A−

σ )δ
(
A−

σ

)−δ (
A−

σ

)δ
eA

−
σ t .

Applying [15, Corollary 6.11] with B = (μ0 Id−A−
σ )δ , A = A−

σ and x = (
A−

σ

)−δ
y,

for y ∈ H
−
σ , we obtain that for some constant positive C ,

∥∥∥(μ0 Id−A−
σ )δ

(
A−

σ

)−δ
y
∥∥∥
H

� C‖y‖H, ∀y ∈ H
−
σ ,

and thus
∥∥∥(μ0 Id−A−

σ )δ
(
A−

σ

)−δ
∥∥∥L(H−

σ )
� C .

Consequently,

∥∥∥(μ0 Id−A−
σ )δeA

−
σ t

∥∥∥L(H−
σ )

�
∥∥∥(μ0 Id−A−

σ )δ
(
A−

σ

)−δ
∥∥∥L(H−

σ )

∥∥∥(
A−

σ

)δ
eA

−
σ t

∥∥∥L(H−
σ )

,

and the desired estimate follows then immediately from [15, Theorem 6.13]. ��

123



Journal of Optimization Theory and Applications

We also define

U
+
σ := B∗(H+

σ )∗, U
−
σ := B∗ (D(A∗) ∩ (H−

σ )∗
)
,

and

p+
σ : U → U

+
σ , p−

σ : U → U
−
σ , i+σ : U+

σ → U, i−σ : U−
σ → U,

the orthogonal projections and the inclusion maps. Note that we have the following
relations for the above maps:

i+σ = (p+
σ )∗, i−σ = (p−

σ )∗. (2.4)

From [20], we can extend P+
σ and (Id−P+

σ ) as bounded operators

P+
σ ∈ L(D(A∗)′,H+

σ ), (Id−P+
σ ) ∈ L(D(A∗)′,

[D(A∗) ∩ (H−
σ )∗

]′
).

We can thus define

B+
σ := P+

σ Bi+σ ∈ L(U+
σ ,H+

σ ), B−
σ := (Id−P+

σ )Bi−σ ∈ L(U−
σ ,

[D(A∗) ∩ (H−
σ )∗

]′
).

We show as in [2, 3, 20] that

P+
σ B = B+

σ p+
σ , (Id−P+

σ )B = B−
σ p−

σ .

Using the projections P+
σ and Id−P+

σ , system (1.3) can be split into the two sub-
systems (see [2, 3, 20]):

(z+σ )′(t) = A+
σ z

+
σ (t) + B+

σ p+
σ v(t), z+σ (0) = P+

σ z0, (2.5)

(z−σ )′(t) = A−
σ z

−
σ (t) + B−

σ p−
σ v(t), z−σ (0) = (Id−P+

σ )z0. (2.6)

We also introduce the orthogonal projections Q+
σ from Y into Y

+
σ = CH

+
σ and we

define

C+
σ = Cι+σ ,

where ι+σ designates the injection operator from H
+
σ to H. We are now in position to

prove Theorem 1.1.

2.2 Construction of an Infinite Dimensional Observer-Based Control

Let us consider first the system

z̃′(t) = Ãz(t) + Bu(t),
z̃(0) = z̃0.

(2.7)
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We want to construct a finite dimensional vector u such that the system (2.7) is expo-
nentially stable. Let Nσ ∈ N

∗ and (w j )1� j�Nσ
⊂ U, and let us suppose that the

control u(t) is of the form

u(t) =
Nσ∑
j=1

u j (t)w j ,

where u j (t) ∈ C, for 1 � j � Nσ and t � 0. It is natural to introduce the mapping

B : CNσ −→ D(A∗)′, � = (θ1, · · · , θNσ ) �−→ B� =
Nσ∑
j=1

θ j Bw j ,

in such a way that setting

u(t) := (u1(t), · · · , uNσ (t)),

system (2.7) is equivalent to

z̃′(t) = Ãz(t) + Bu(t),
z̃(0) = z̃0.

(2.8)

It is worth noticing that the adjoint B∗ ∈ L(D(A∗),CNσ ) is given by

B∗ψ =
(
〈w1, B

∗ψ〉U, · · · , 〈wNσ , B∗ψ〉U
)
.

Using the projection P+
σ , we get that (2.8) is equivalent to

(̃z+σ )′(t) = A+
σ z̃

+
σ (t) + B+

σ u(t), z̃+σ (0) = P+
σ z̃0, B+

σ = P+
σ B,

(̃z−σ )′(t) = A−
σ z̃

−
σ (t) + B−

σ u(t), z̃−σ (0) = P−
σ z̃0, B−

σ = P−
σ B,

(2.9)

where z̃±σ = P±
σ z̃. We need to show that the finite dimensional part (2.9)1 is exactly

controllable. Let

Nσ � max
Re λ j�−σ

� j , (2.10)

where � j is the geometric multiplicity of the eigenvalue λ j of the operator A. From
[2, Theorem 5] and the first condition in (H1.D), there exists a family (w j )1� j�Nσ

⊂
U

+
σ ⊂ U such that (2.9)1 is exactly controllable. Moreover, it is proved that u is

expressed by means of a linear feedback operator

u = K+
σ z̃, K+

σ (·) = −
Nσ∑
j=1

〈w j , B
∗�P+

σ (·)〉Uw j = −
Nσ∑
j=1

(B∗(�P+
σ (·))) jw j ,

(2.11)
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where � ∈ L(H+
σ , (H+

σ )∗) is the unique solution of the algebraic Riccati equation:
for all ξ, ζ ∈ H

+
σ

〈ξ, ζ 〉H + 〈(A+
σ + σ Id)ξ,�ζ 〉H + 〈�ξ, (A+

σ + σ Id)ζ 〉H
−∑Nσ

j=1〈B∗�ξ,w j 〉U〈B∗�ζ,w j 〉U = 0,
〈�ξ, ζ 〉H = 〈ξ,�ζ 〉H, and ∀ξ �= 0, 〈�ξ, ξ 〉H > 0.

(2.12)

It is well-known (see for instance [7, page 292]) that this Riccati operator is strongly
related to the standard LQR problem with infinite horizon. In particular, this choice
ensures that the solution of the finite dimensional system (2.9)1

(̃z+σ )′(t) = A+
σ z̃

+
σ (t) − B+

σ (B∗(�P+
σ z̃(t))),

is exponentially stable i.e.

‖̃z+σ (t)‖H � Me−(σ+ε)t ‖̃z0‖H, t > 0.

It follows from Duhamel’s formula that the whole system (2.9) is exponentially stable
(see [2]). We can construct L+

σ similarly considering the system

z̃′�(t) = A∗̃z�(t) + C∗u�(t),
z̃�(0) = z̃0�.

(2.13)

Using similar arguments and the second condition in (H1.D), we show that there exists
a family (w�

j )1� j�Nσ
⊂ Y

+
σ such that

u� = L �̃z�, L�(·) = −
Nσ∑
j=1

〈w�
j ,C��(P

+
σ )∗(·)〉Yw�

j = −
Nσ∑
j=1

(C∗
�(��(P

+
σ )∗(·))) jw�

j ,

where

C� : CNσ −→ D(A∗)′, � = (θ1, · · · , θNσ ) �−→ C�� =
Nσ∑
j=1

θ jC
∗w�

j ,

where �� ∈ L((H+
σ )∗,H+

σ ) is the unique solution of the algebraic Riccati equation:
for all ξ, ζ ∈ (H+

σ )∗

〈ξ, ζ 〉H + 〈((A+
σ )∗ + σ Id)ξ,��ζ 〉H + 〈��ξ, ((A+

σ )∗ + σ Id)ζ 〉H
−∑Nσ

j=1〈C��ξ,w j 〉Y〈C��ζ,w j 〉Y = 0,
〈��ξ, ζ 〉H = 〈ξ,��ζ 〉H, and ∀ξ �= 0, 〈��ξ, ξ 〉H > 0.

(2.14)
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Hence, we define

L+
σ (·) = L∗

�(·) = −
Nσ∑
j=1

〈w�
j , ·〉Yχ j , (2.15)

with

χ j = P+
σ ��C

∗w�
j ∈ H

+
σ . (2.16)

With this choice, we get that (A + L+
σ C)∗ and hence A + L+

σ Q+
σ C are exponentially

stable with decay rate less than −σ . Finally, using K+
σ and L+

σ we construct the
observer ẑ satisfying (1.6–1.7), that is

ẑ′(t) = Âz(t) + BK+
σ ẑ(t) + L+

σ Q+
σ (Cẑ(t) − y(t)),

ẑ(0) = 0.
(2.17)

2.3 Stability of the Closed-Loop System

We define the error e = z − ẑ. Then, we obtain

e′(t) = (A + L+
σ Q+

σ C)e(t), e(0) = z0,
z′(t) = (A + BK+

σ )z(t) − BK+
σ e(t), z(0) = z0.

(2.18)

We prove that e is exponentially stable with decay rate −σ .

Proposition 2.2 Systems (2.17) and (2.18) are exponentially stable with decay rate
−σ .

Proof Since (A+ L+
σ Q+

σ C) is of negative type strictly less than −σ , then there exists
0 < ε′′ < ε such that

‖e(t)‖H � Me−t(σ+ε′′)‖z0‖H. (2.19)

Going back to system (2.5) with the control given by (1.6), we have, since K+
σ z−σ = 0,

(z+σ )′(t) = (A+
σ + B+

σ K+
σ )z+σ (t) − B+

σ K+
σ e(t), z+σ (0) = P+

σ z0.

Moreover, there exists ε′ > 0 with ε′′ < ε′ < ε such that (A+
σ + B+

σ K+
σ ) is

exponentially stable with rate −σ − ε′. We have

z+σ (t) = et(A
+
σ +B+

σ K+
σ )P+

σ z0 −
∫ t

0
e(t−s)(A+

σ +B+
σ K+

σ )B+
σ K+

σ e(s)ds.

From (2.19), we see that

‖z+σ (t)‖H � Me−t(σ+ε′′)‖z0‖H. (2.20)
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We deal now with the infinite dimensional part z−σ of the state. From (2.5) with the
control given by (1.6), we have

(z−σ )′(t) = A−
σ z

−
σ (t) + B−

σ p−
σ K+

σ z+σ (t) − B−
σ p−

σ K+
σ e(t), z−σ (0) = (Id−P+

σ )z0.

Using Duhamel’s formula, we obtain that

z−σ (t) = et A
−
σ (Id−P+

σ )z0 +
∫ t

0
e(t−s)A−

σ B−
σ p−

σ K+
σ

(
z+σ (s) − e(s)

)
ds.

We note that since the resolvent commutes with the projection P+
σ and e(t−s)A−

σ , we
obtain for μ0 ∈ ρ(A) and γ ∈ [0, 1),

e(t−s)A−
σ B−

σ = e(t−s)A−
σ (μ0 Id−A)γ (Id−P+

σ )(μ0 Id−A)−γ Bi−σ
= e(t−s)A−

σ (μ0 Id−A−
σ )γ (Id−P+

σ )(μ0 Id−A)−γ Bi−σ
= (μ0 Id−A−

σ )γ e(t−s)A−
σ (Id−P+

σ )(μ0 Id−A)−γ Bi−σ .

(2.21)

Using (H1.B), (2.3), (2.19), (2.20) and (2.21), we get

‖z−σ (t)‖H � M‖z0‖H
(
e−t(σ+ε) +

∫ t

0

1

(t − s)γ
e−(t−s)(σ+ε)e−s(σ+ε′′) ds

)

� Me−t(σ+ε′′)‖z0‖H
(
1 +

∫ t

0

1

(t − s)γ
e(t−s)(ε′′−ε) ds

)
.

(2.22)

Then, since ε′′ < ε, we obtain

‖z−σ (t)‖H � Me−t(σ+ε′′)‖z0‖H. (2.23)

Then from (2.19), (2.20) and (2.23), we obtain that z, ẑ and the error e are exponentially
stable. ��
That concludes the proof of Theorem 1.1.

Remark 2.3 According to (1.6) and (2.11), the control reads

v(t) =
Nσ∑
i=1

Ki
(̂
z+σ

)
wi ,

with Ki ∈ L(H+
σ ,C) and wi ∈ U

+
σ , i = 1, . . . , Nσ . From the decomposition (2.2)

and the fact that (H+
σ )⊥ = (H−

σ )∗, we have that if ζ ∈ (H+
σ )∗, then

∀φ ∈ H
+
σ , 〈φ, ζ 〉H = 0 �⇒ ζ = 0.

Since dim
(
(H+

σ )∗
) = dimL(H+

σ ,C), we infer that there exists a unique ζi ∈ (H+
σ )∗ ⊂

D(A∗) such that

Ki
(̂
z+σ

) = 〈̂z, ζi 〉H .
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In other words, the control can also be written in the form

v(t) =
Nσ∑
i=1

〈̂z, ζi 〉H wi .

In the special case where there is only one unstable simple eigenvalue (with an
eigenspace spanned by an eigenfunction ε1 ∈ H), the above relations take simpler
forms. Indeed, we have then

w1 = B∗ε1,

and for all ϕ ∈ H
+
σ = Span{ε1}:

K1(ϕ) = −〈B∗ε1, B∗�P+
σ ϕ〉U = 〈ζ1, ϕ〉(H+

σ )∗,H+
σ
, ζ1 = −(P+

σ )∗�BB∗ε1.

3 Finite Dimensional Observer

3.1 Spectral Decomposition of the System

In this section, we assume hypotheses (H2.A), (H2.B), (H2.C) and (H2.D) to hold
true.

Consider ν > 0 and let us introduce the projection operators P+
ν as in (1.5) where

in this case �+
ν is a circle enclosing 	+

ν but no other point of the spectrum of A and
oriented counterclockwise (see [12, V.5, p.272]). Since A is a self-adjoint operator,
then P+

ν is well defined. Moreover from the expression of the projections, it follows
that

(P+
ν )∗ = P+

ν .

Thus, P+
ν is orthogonal projection of norm equal to 1. We set

H
+
ν = P+

ν H, H
−
ν = (Id−P+

ν )H, H = H
+
ν ⊕ H

−
ν ,

and

A+
ν := A|H+

ν
: H+

ν → H
+
ν , A−

ν := A|H−
ν

: D(A) ∩ H
−
ν → H

−
ν .

We also define as before

U
+
ν := B∗

H
+
ν , U

−
ν := B∗ (D(A) ∩ H

−
ν

)
,

and

p+
ν : U → U

+
ν , p−

ν : U → U
−
ν , i+ν : U+

ν → U, i−ν : U−
ν → U,
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the orthogonal projections and the inclusion maps. Note that we have the following
relations for the above maps:

i+ν = (p+
ν )∗, i−ν = (p−

ν )∗. (3.1)

We can thus define

B+
ν := P+

ν Bi+ν ∈ L(U+
ν ,H+

ν ), B−
ν := (Id−P+

ν )Bi−ν ∈ L(U−
ν ,H−

ν ).

It is proved in [2] (see also [3] and [20]) that

P+
ν B = B+

ν p+
ν , (Id−P+

ν )B = B−
ν p−

ν .

We introduce also the orthogonal projection Q+
ν from Y into Y+

ν = CH
+
ν and define

C+
ν = Cι+ν ,

where ι+ν designates the injection operator fromH
+
ν toH. Consider now σ� > σ > 0.

We take ν = σ or ν = σ� in the maps and spaces defined previously. Since A is
self-adjoint with compact resolvent, we deduce the existence of ε > 0 such that for
all t � 0

‖eA−
σ t‖L(H−

σ ) � e−(σ+ε)t , (3.2)

and

‖eA−
σ� t‖L(H−

σ� ) � e−σ�t . (3.3)

The system (1.3) splits into

(z+σ�)
′(t) = A+

σ� z+σ�(t) + B+
σ� p+

σ�v(t), z+σ�(0) = P+
σ� z0, (3.4)

(z−σ�)
′(t) = A−

σ� z−σ�(t) + B−
σ� p−

σ�v(t), z−σ�(0) = (Id−P+
σ�)z0. (3.5)

3.2 Finite Dimensional Observer-Based Control and Stability of the Closed-Loop
System

We are now in position to prove Theorem 1.2. The matrices K+
σ and L+

σ being respec-
tively given by (2.11) and (2.15), we define the finite dimensional observer-based
feedback control by

v(t) = K+
σ ẑ�(t) ∈ B∗P+

σ H ⊂ B∗P+
σ�H, (3.6)

where the finite dimensional observer ẑ� ∈ P+
σ�H solves

ẑ′�(t) = A+
σ� ẑ�(t) + B+

σ�v(t) + L+
σ Q+

σ (C+
σ� ẑ�(t) − y(t)),

ẑ�(0) = 0.
(3.7)
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Our goal is to prove that the coupled system (1.3), (3.6) and (3.7) is exponentially
stable.

We define the error e = z+σ� − ẑ� which satisfies the following system

e′(t) = A+
σ�e(t) + L+

σ Q+
σ (C+

σ�e(t) + Cz−σ�(t)),
e(0) = z+σ�(0).

(3.8)

We prove that ẑ and e are exponentially stable with decay rate −σ . Let us set

X =
(̂
z�
e

)
, X

0 =
(

0
z+σ�(0)

)
.

Using (3.7) and (3.8), X satisfies the system

X
′(t) = AX(t) + L(z−σ�(t)),

X(0) = X
0,

(3.9)

where

A =
(
A+

σ� + B+
σ�K+

σ −L+
σ Q+

σ C
+
σ�

0 A+
σ� + L+

σ Q+
σ C

+
σ�

)
, L(z−σ�) =

(−L+
σ Q+

σ Cz−σ�

L+
σ Q+

σ Cz−σ�

)
.

(3.10)

Let us first prove that A is stable matrix. In the sequel, the constant M is a generic
constant that can change from a line to another but need to be independent of σ�.

Lemma 3.1 The matrices A+
σ� + B+

σ�K+
σ and A+

σ� + L+
σ Q+

σ C
+
σ� are exponentially

stable with a decay rate less than −σ .

Proof Let ξ0 ∈ H
+
σ� be given. To prove that A+

σ� + B+
σ�K+

σ is exponentially stable, we
only need to show that the solution ξ(t) of the finite dimensional system

ξ ′(t) = (A+
σ� + B+

σ�K+
σ )ξ(t),

ξ(0) = ξ0,
(3.11)

is exponentially decaying. Consider then the infinite dimensional system

x ′(t) = (A + BK+
σ )x(t),

x(0) = ξ0.
(3.12)

From Section 2.2, we see that the system (3.12) is exponentially stable of decay rate
−σ − ε′. It implies that

‖x(t)‖H � Me−t(σ+ε′)‖ξ0‖H. (3.13)
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On the other hand, applying P+
σ� to (3.12) and recalling that K+

σ x(t) acts only on the
projected part of x(t) on H

+
σ , we obtain that

(x+
σ�)

′(t) = A+
σ�x+

σ�(t) + B+
σ�K+

σ x(t) = (A+
σ� + B+

σ�K+
σ )x+

σ�(t),
x+
σ�(0) = ξ0.

(3.14)

This shows that x+
σ�(t) is the unique solution ξ(t) of (3.11), and we get from (3.13),

that

‖ξ(t)‖H = ‖x+
σ�(t)‖H = ‖P+

σ�x(t)‖H � Me−t(σ+ε′)‖ξ0‖H,

for all ξ0 ∈ H
+
σ� . Hence

∥∥∥et(A+
σ�+B+

σ� K
+
σ )ξ0

∥∥∥
H

� Me−t(σ+ε′)‖ξ0‖H,

and the matrix A+
σ� + B+

σ�K+
σ is exponentially stable with a decay rate less than

−σ . We use the same argument for A+
σ� + L+

σ Q+
σ C

+
σ� by considering its adjoint

(A+
σ�)

∗ + (C+
σ�)

∗(L+
σ )∗ that has exactly the same form as the one previously studied.

��
Since A is a triangular matrix, using Lemma 3.1 and Duhamel’s formula, we obtain
that A is stable with exponential rate strictly less than −σ . We can now prove the
exponential stability of the full closed-loop system (3.7) and (1.3):

X
′(t) = AX(t) + L(z−σ�(t)),

(z−σ�)
′(t) = A−

σ� z−σ�(t) + B−
σ� p−

σ�K
+
σ X(t),

(3.15)

where K+
σ = (K+

σ , 0) and with the initial conditions

X(0) = X
0,

z−σ�(0) = (Id−P+
σ�)z0.

From Duhamel’s formula, the two first equations in (3.15) also read

X(s) = esAX(0) +
∫ s

0
e(s−τ)A

L(z−σ�(τ ))dτ,

z−σ�(t) = et A
−
σ� z−σ�(0) +

∫ t

0
e(t−s)A−

σ�
(
B−

σ� p−
σ�K

+
σ X(s)

)
ds.

Substituting the first equation above into the second one yields

z−σ�(t) = et A
−
σ� z−σ�(0)

+
∫ t

0
e(t−s)A−

σ� B−
σ� p−

σ�K
+
σ

(
esAX(0) +

∫ s

0
e(s−τ)A

L(z−σ�(τ ))dτ

)
ds.

(3.16)
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Setting

Z0 := et A
−
σ� z−σ�(0) +

∫ t

0
e(t−s)A−

σ�

(
B−

σ� p−
σ�K

+
σ

(
esAX(0)

))
ds,

relation (3.16) can be written

z−σ�(t) =
∫ t

0

∫ s

0
e(t−s)A−

σ� B−
σ� p−

σ�K
+
σ

(
e(s−τ)A

L(z−σ�(τ ))dτds
)

+ Z0. (3.17)

To prove the stability of z−σ� , we prove the existence of a unique solution to (3.17) in
a weighted space by using a fixed point argument. More precisely, let us define the
following map

� : L∞
σ (0, ∞;H−

σ�) −→ L∞
σ (0, ∞;H−

σ�)

g �−→ �(g) :=
∫ t

0

∫ s

0
e(t−s)A−

σ� B−
σ� p

−
σ�K

+
σ e(s−τ)A

L(g(τ )) dτds + Z0.

Then, equation (3.16) simply reads

�(z−σ�) = z−σ� .

First, we prove that the function� is well defined.Given g ∈ L∞
σ (0,∞;H−

σ�). SinceC
is bounded, L is also bounded. Hence, using the definition of�, (H2.B) (boundedness
of B), (3.3) (exponential decay of A−

σ� ) and the exponential decay ofA, we obtain that
there exists ε′′ > 0 such that

‖�(g)(t)‖H � M
∫ t

0

∫ s

0
e−(t−s)σ �

e−(s−τ)(σ+ε")e−τσ ‖eτσ g(τ )‖H dτ ds

+M
∥∥∥z0

∥∥∥
H

∫ t

0
e−(t−s)σ �

e−sσ ds + e−tσ�‖z0‖H.

Consequently

‖�(g)(t)‖H � I1 + I2 + e−tσ�‖z0‖H, (3.18)

where we have set

I1 := M
∫ t

0
e−(t−s)σ �

e−sσ
(∫ s

0
e−(s−τ)ε′′ ‖eτσ g(τ )‖H dτ

)
ds,

I2 := M
∥∥∥z0

∥∥∥
H

∫ t

0
e−(t−s)σ �

e−sσ ds.

Noticing that

∫ s

0
e−(s−τ)ε′′

dτ = 1

ε′′
[
1 − e−sε′′] � 1

ε′′ ,
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we get that

∫ s

0
e−(s−τ)ε′′ ‖eτσ g(τ )‖H dτ � 1

ε′′ ‖g‖L∞
σ (0,∞;H−

σ∗ ),

and hence

I1 � M‖g‖L∞
σ (0,∞;H−

σ∗ )

e−tσ

ε′′

∫ t

0
e(t−s)(σ−σ�) ds.

Since

∫ t

0
e(t−s)(σ−σ�) ds = 1 − e−t(σ ∗−σ)

(σ � − σ)
� 1

(σ � − σ)
,

we have

I1 � Me−σ t

ε′′(σ � − σ)
‖g‖L∞

σ (0,∞;H−
σ� ) ,

and similarly

I2 � Me−σ t
(∫ t

0
e(t−s)(σ−σ�) ds

) ∥∥∥z0
∥∥∥
H

� Me−σ t

(σ � − σ)

∥∥∥z0
∥∥∥
H

.

Using the above estimates in (3.18), we get that

‖�(g)(t)‖H � Me−σ t
(

1

ε′′(σ � − σ)
‖g‖L∞

σ (0,∞;H−
σ� ) +

∥∥∥z0
∥∥∥
H

+ 1

σ ∗ − σ

∥∥∥z0
∥∥∥
H

)
,

and hence �(g) ∈ L∞
σ (0,∞;H−

σ�).
It remains to show that� is a contractionmapping.Given g1, g2 ∈ L∞

σ (0,∞;H−
σ�),

the same calculations as above show that

‖�(g1) − �(g2)‖L∞
σ (0,∞;H−

σ� ) � M

ε′′(σ � − σ)
‖g1 − g2‖L∞

σ (0,∞;H−
σ� ) .

The application � is thus a contraction provided that σ� is chosen large enough to
ensure that

M

ε′′(σ � − σ)
< 1. (3.19)

Then, applying the fixed point theorem we get that there exists a unique z−σ� ∈
L∞

σ (0,∞;H−
σ�) such that �(z−σ�) = z−σ� and

‖z−σ�(t)‖H � Me−σ t
∥∥∥z0

∥∥∥
H

.
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Moreover, going back to the first equation in (3.15), and using Duhamel’s formula
again, we easily obtain that

‖X(t)‖H×H � Me−σ t
∥∥∥z0

∥∥∥
H

.

This completes the proof of Theorem 1.2.

4 Stabilization of the Reaction–Diffusion Equation by an Infinite
Dimensional Observer

In this section, we apply Theorem 1.1 for the stabilization of the heat equation. Let
� ⊂ R

N (N � 1) be a bounded domain with smooth boundary. Let us consider � a
non-empty open subset of ∂� and the control problem:

∂t z(t, x) − �z(t, x) − cz(t, x) = 0 in (0,∞) × �,

z(t, x) = v(t, x) on (0,∞) × �,

z(t, x) = 0 on (0,∞) × (∂� \ �),

z(0, ·) = z0 in �,

y(t, x) = 1Oz(t, x) in (0,∞) × �,

(4.1)

where c ∈ L∞(�), O a non empty open subset of RN , with O ⊂ �. We assume that
z0 ∈ L2(�).

In order to write (4.1) under the form (1.3), we introduce the following functional
setting:

H = L2(�), U = L2(�),

Az = �z + cz, D(A) = H2(�) ∩ H1
0 (�),

Y = L2(O), C = 1O, C ∈ L(H,Y).

The operator (A,D(A)) generates an analytical semigroup with compact resolvent,
this is a direct consequence of [4, Theorem 2.12, p.115]. Thus (H1.A) is satisfied.

To define the control operator B, we use a standard method (see, for instance [24,
pp.341-343] or [19]): we first consider the lifting operator D0 ∈ L(L2(∂�); L2(�))

such that for any v ∈ L2(∂�),w = D0v is the unique solution of the following system

μ0w − �w − cw = 0 in �,

w = v on ∂�,
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where μ0 ∈ ρ(A). Let us recall how we can reduce (4.1) to an evolution problem
(1.3). We set z̃ = z − w, with w = D0v. Then z̃ is the weak solution of the system

∂t z̃ − �̃z − c̃z = −∂tw + μ0w in (0,∞) × �,

z̃ = 0 on (0,∞) × ∂�,

z̃(0, ·) = z̃0 := z0 − w(0, ·) in �.

Using Duhamel’s formula, we have

z̃(t) = et Az̃0 +
∫ t

0
e(t−s)A(−∂tw(s) + μ0w(s)) ds.

By integrating by parts, we obtain

z(t) = et Az0 +
∫ t

0
e(t−s)A(μ0 Id−A)w(s) ds. (4.2)

Remark 4.1 The above computations are valid only for smooth solutions. It is worth
noticing that formula (4.2) makes sense for v ∈ L2(∂�). In fact, to handle the general
case, we refer to [24, pp.342] and the definition of weak solutions therein.

We get finally that the problem (4.1) can be rewritten as

z′(t) = Az(t) + Bv(t), t > 0, z(0) = z0,
y(t) = Cz(t),

with

B = (μ0 Id−A)D0 : U −→ (D(A∗))′,

where we have extended the operator A as an operator from L2(�) into (D(A∗))′ and
where we see U as a closed subspace of L2(∂�) (by extending by zero in ∂� \ � any
v ∈ U). Using standard results on elliptic equations, we have that B satisfies (H1.B)
for any γ > 3/4 (see for instance [18, Theorem 2.6]). To apply Theorem 1.1, we only
need to check (H1.D). We recall that

D(A∗) = H2(�) ∩ H1
0 (�), A∗ = A.

Moreover, by classical results (see [24, Proposition 10.6.7]), we see that

D∗
0 := − ∂

∂ν
(μ0 Id−A∗)−1 = − ∂

∂ν
(μ0 Id−A)−1,

and thus

B∗ε := − ∂ε

∂ν |�
.
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Thus if ε satisfies A∗ε = λε and B∗ε = 0, then

λε − �ε − cε = 0 in �,

ε = 0 on ∂�,
∂ε
∂ν

= 0 on �.

The unique continuation property is a consequence of Holmgren’s uniqueness the-
orem (see [11, Theorem 3.5.1, p.125]), by using an extension of the domain. On the
other hand, if ε satisfies Aε = λε and Cε = 0, then

λε − �ε − cε = 0 in �,

ε = 0 on ∂�,

ε = 0 in O.

Applying Holmgren’s theorem again, we obtain ε = 0. Thus (H1.D) holds for any σ .
Now, we define the observer ẑ using Remark 2.3. Let us define Nσ by (2.10) and ẑ

the solution of the closed loop system

∂t ẑ − �̂z − ĉz = ∑Nσ

i=1

〈
1O(̂z − z), w�

i

〉
Y

χi in (0,∞) × �,

ẑ = ∑Nσ

i=1 〈̂z, ζi 〉H wi on (0,∞) × �,

ẑ = 0 on (0,∞) × (∂� \ �),

ẑ(0, ·) = 0 in �,

(4.3)

where (w�
i )1�i�Nσ

⊂ Y, (χi )1�i�Nσ
⊂ H, (ζi )1�i�Nσ

⊂ D(A∗) and (wi )1�i�Nσ
⊂

U (see Eqs. (2.15–2.16) and Remark 2.3). We deduce the following result by applying
Theorem 1.1:

Theorem 4.2 Assume σ > 0. There exists a control

v(t) =
Nσ∑
i=1

(∫
�

ẑ(t)ζi dx

)
wi , (4.4)

with ζi ∈ H2(�)∩H1
0 (�),wi ∈ H1/2(�), i = 1, . . . , Nσ such that the coupled system

(4.1) and (4.3) is exponentially stable that satisfies for z0 ∈ L2(�) the estimate

‖z(t)‖L2(�) � Ce−σ t‖z0‖L2(�). (4.5)

Remark 4.3 In dimension 2, we can obtain the same result for the operator

Az = ∇ · (b∇z) + cz, D(A) = H2(�) ∩ H1
0 (�),

with b a positive-definite symmetric matrix of variable coefficients in L∞(�), using
the unique continuation property from [1, Theorem 3.2].
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5 Stabilization of the Reaction–Diffusion Equation by a Finite
Dimensional Observer

Let � be a domain of RN (N � 1) with smooth boundary. In this section, we apply
Theorem 1.2 to the following initial boundary value problem

∂t z(t, x) − �z(t, x) − cz(t, x) = 1O′v(t, x) in (0,∞) × �,

z(t, x) = 0 on (0,∞) × ∂�,

z(0, ·) = z0 in �,

y(t, x) = 1Oz(t, x) in (0,∞) × �,

(5.1)

where O and O′ are two non empty open sets such that O ⊂ � and O′ ⊂ �. In this
case, we have

H = L2(�), U = L2(O′),
Az = �z + cz, D(A) = H2(�) ∩ H1

0 (�).

The operator A is self-adjoint with compact resolvent, then in particular, we see that
(H2.A) holds true. Moreover,

B : U → H, B = 1O′ ,

and

Y = L2(O), C : H → Y, C = 1O.

We can check as the previous section that (H2.B), (H2.C) and (H2.D) are verified.
Let fix σ > 0 and σ� > σ . The hypothesis (H2.A) implies in particular that A is
diagonalizable. Hence

H
+
σ =

⊕
λ∈	+

σ

ker(A − λ Id), H
+
σ� =

⊕
λ∈	+

σ�

ker(A − λ Id).

The map P+
σ (resp. P+

σ� ) is then the orthogonal projection onH+
σ (resp.H+

σ� ) spanned
by the eigenvectors associated to 	σ+ (resp. 	σ�

+ ).
Thus A+

σ (resp. A+
σ� ) can be viewed as the endomorphism on H

+
σ (resp. H+

σ�)
associated to the diagonal matrix of eigenvalues 	+

σ (resp. 	+
σ�).

We define the finite dimensional observer

ẑ′�(t) = A+
σ� ẑ�(t) +

Nσ∑
i=1

〈̂z�, ζi 〉H B+
σ ∗wi +

Nσ∑
i=1

〈
(C+

σ� ẑ� − y), w�
i

〉
Y

χi ,

ẑ�(0) = 0,

(5.2)
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where (w�
i )1�i�Nσ

⊂ Y, (χi )1�i�Nσ
⊂ H, (ζi )1�i�Nσ

⊂ D(A∗) and (wi )1�i�Nσ
⊂

U are chosen as the previous section (see Eqs. (2.15–2.16) and Remark 2.3).
Using Theorem 1.2, we deduce the following result:

Theorem 5.1 Let σ > 0 and σ� > σ . There exists a control v based on ẑ� solution of
the system (5.2) where

v(t) =
Nσ∑
i=1

(∫
�

ẑ�(t)ζi dx

)
wi , (5.3)

with ζi ∈ H2(�) ∩ H1
0 (�), wi ∈ L2(O′), i = 1, . . . , Nσ such that for σ� large

enough, the coupled system (5.1) and (5.2) is exponentially stable that satisfies for
z0 ∈ L2(�) the estimate

‖z(t)‖L2(�) � Ce−σ t‖z0‖L2(�). (5.4)

6 Conclusion

In this paper, we proposed a constructive method to stabilize a class of linear parabolic
evolution systems z′ = Az + Bv by means of a finite dimensional control v, under
the observation y = Cz. The control is based on the design of a Luenberger observer
which can be infinite dimensional or finite dimensional of dimension large enough
(under stronger assumptions). In both cases, we show that if (A, B) and (A,C) verify
the Fattorini-Hautus Criterion, then we can construct an observer-based control v of
finite dimension such that the closed-loop system is exponentially stable. The results
are applied to study the stabilization of the diffusion system with Dirichlet boundary
control and an internal observation. Possible future work is to implement this method
numerically for the example studied here, or for more involved examples related to
population dynamics, in the spirit of [16].
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